本书展示了如何使用Ray构建机器学习应用程序,介绍了Ray如何融入当前的机器学习工具,以及Ray如何与这些工具紧密集成。本书前3章介绍了Ray作为分布式Python框架的基础知识,并提供了应用示例;第4-10章介绍了Ray高级库(Ray RLlib、Ray Tune、Ray Dataset、Ray Train、Ray Serve、Ray Cluster、Ray AIR),并展示如何使用高级库创建应用程序;第11章对Ray的生态进行了总结,并指导读者继续学习。
本书从原理的角度,力求讲解清楚深度学习、强化学习、深度强化学习中的一些精选方法,并从实践的角度,通过一系列循序渐进的原创实验,引领读者独立编程实现这些方法,以期为读者精通深度强化学习并应用深度强化学习方法解决实际问题奠定坚实基础。本书不仅适合计算机科学与技术、人工智能、物联网工程、数据科学与大数据、软件工程、通信工程、电子信息、机器人工程、自动化、智能制造等相关专业高年级本科生及研究生教学与自学使用,也适合机器学习等领域的从业者、科研人员及爱好者自学与参考使用。
本书以机器学习算法为主题,详细介绍算法的理论细节与应用方法。全书共19章,分别介绍了逻辑回归与最大熵模型、k-近邻模型、决策树模型、朴素贝叶斯模型、支持向量机模型、集成学习框架、EM算法、降维算法、聚类算法、神经网络模型等基础模型或算法,以及8个综合项目实例。本书重视理论与实践相结合,希望为读者提供全面而细致的学习指导。
深度学习理论无疑是当今教育界的重要探索主题,其中“深度学习的本质是什么”“深度学习的价值追求是什么”及“深度学习是怎样的活动”是人类深度学习理论发展和实践推进的关键问题。走向文化之思成为当前深度学习研究与探索的新兴方向。文化哲学理论体系对人与文化、文化与教育教学等方面的问题有深刻洞察力,其所蕴含的“文化本质论—文化价值论—文化活动论”的内在逻辑进路,可以为深度学习的创新提供独特视角。本书分别从这几方面系统探索深度学习的基本理论问题,为人们更好地认识及推动深度学习实践提供参考。
本书针对推荐系统中的二部图、社交网络和知识图谱的图结构模式,研究基于图表示学习的深度推荐系统。通过挖掘图信息中的隐性关系和高阶关系,使用图学习的方式探索用户和产品的潜在关联,弥补相关推荐系统研究在挖掘用户之间或者产品之间隐性关系方面的不足,形成一系列合理而且有效的推荐技术。增加推荐系统输入的多样性,运用社交网络和知识图谱等辅助信息,缓解推荐系统目前面临的“数据稀疏”、“冷启动”等问题,提高推荐系统的准确性和多样性,为推荐系统技术的发展提供可参考的方向。
全书共8章,第1章对现有常见的基于深度学习剩余寿命预测技术研究现状进行深入分析,第2章给出了一种充分融合深度学习和随机过程优势的退化系统剩余寿命预测方法,第3章与第4章重点围绕全寿命周期情形所开展的剩余寿命预测方法研究,第3章得到的点估计预测结果,第4章是在Bayesian深度学习框架下确定的是概率分布预测结果,第5章与第6章针对零寿命标签情形所开展的剩余寿命预测方法研究,第5章提出了一种基于网络模型平均的退化系统剩余寿命点估计预测方法,第6章研究了基于Bayesian深度学习的退化系
深度学习是人工智能领域无法避开的课题之一,也是比较强大的方法之一。很多从事算法工作或相关工作的人,或多或少都在应用深度学习方法解决相关领域的问题。本书针对深度学习知识做进阶性探讨。通过11章内容,对卷积网络、新型结构、注意力机制、模型压缩、自监督学习、目标检测中的高级技巧、无监督学习、Transformer高级篇,以及图神经网络和元学习进行了深入的探讨,最后对深度学习的未来发展进行了展望。
本书详细介绍了强化学习的理论推导、算法细节。全书共12章,包括强化学习概述、马尔可夫决策过程、退化的强化学习问题、环境已知的强化学习问题、基于价值的强化学习算法、基于策略的强化学习算法、AC型算法、基于模型的强化学习算法等相关知识。本书系统性强、概念清晰,内容简明通俗。除了侧重于理论推导,本书还提供了许多便于读者理解的例子,以及大量被实践证明有效的算法技巧,旨在帮助读者进一步了解强化学习领域的相关知识,提升其现实中的工程能力。本书可作为高等院校数学、计算机、人工智能等相关专业的强化学习教材,但需
本书介绍了深度学习的基本理论、工程实践及其在产业界的部署和应用。在深度学习框架的介绍中,书中结合代码详细讲解了经典的卷积神经网络、循环神经网络和基于自注意力机制的Transformer网络及其变体。还介绍了这些模型在图像分类、目标检测、语义分割、欺诈检测和语音识别等领域的应用。此外,书中还涵盖了深度强化学习和生成对抗网络的前沿进展。在系统工程和产业实践方面,书中解释了如何使用分布式系统训练和部署模型以处理大规模数据。本书系统介绍了构建深度学习推理系统的过程,并结合代码讲解了分布式深度学习推理系统