可解释AI(Interpretable AI)将教会你识别模型所学习的模式及其产生结果的原因。通过阅读《可解释AI实战(PyTorch版)》,你将掌握一些用于解释白盒模型(如线性回归和广义可加模型)的方法,以及一些用于解释复杂深度学习模型的方法。可解释AI是一个快速发展的领域,本书将该领域的前沿研究简化为你可以在Python中实现的实际方法。 主要内容 ● 解释AI模型的技术 ● 最大限度地减少错误、偏见、数据泄露和概念漂移 ●
《机器学习实战:视频教学版》基于Python语言详细讲解机器学习算法及其应用,用于读者快速入门机器学习。本书配套示例源代码、PPT课件、教学视频、教学大纲、习题与答案、作者微信答疑。《机器学习实战:视频教学版》共分12章,内容包括机器学习概述、Python数据处理基础、Python常用机器学习库、线性回归及应用、分类算法及应用、数据降维及应用、聚类算法及应用、关联规则挖掘算法及应用、协同过滤算法及应用,最后通过3个综合实战项目(包括新闻内容分类实战、泰坦尼克号获救预测实战、中药数据分析项
《PyTorch深度学习与企业级项目实战》立足于具体的企业级项目开发实践,以通俗易懂的方式详细介绍PyTorch深度学习的基础理论以及相关的必要知识,同时以实际动手操作的方式来引导读者入门人工智能深度学习。本书配套示例项目源代码、数据集、PPT课件与作者微信群答疑服务。《PyTorch深度学习与企业级项目实战》共分18章,内容主要包括人工智能、机器学习和深度学习之间的关系,深度学习框架PyTorch 2.0的环境搭建,Python数据科学库,深度学习基本原理,PyTorch 2.0入门,
本书共分为三部分,内容包括:概述、基于舆情现象识别视角的网络舆情预测、政府媒体在网络舆情演化中的传播力与影响力研究。具体内容包括:绪论;相关理论与技术概述;面向非均衡事件子集的舆情反转预测;网络暴力类舆情事件演化及预测等。
本书主要介绍了梯度下降和PyTorch的Autograd;训练循环、数据加载器、小批量和优化器;二元分类器、交叉熵损失和不平衡数据集;决策边界、评估指标和数据可分离性等内容。
本书系统介绍了基于强化学习的多智能体协同技术,涉及进化算法、纳什均衡等相关主题,讨论了基于强化学习的多智能体协同理论、一致性学习算法、基于协同Q学习算法的多智能体规划技术等,研究了ICFA方法的优越性,将计算时间和结果准确性作为指标进行考核,在多机器人实时携杆问题中验证了算法的有效性。并给出了针对多机器人协同问题的应用实例。本书不仅包含多智能体强化学习协同研究的最新进展,而且提供了一种相对于传统方法更加高效的技术路线,并根据未来的研究趋势分析本书的应用前景。
本书包含代码实践和案例实践,运用OpenCV、PyTorch等框架工具详细讲解中文车牌识别检测、采用三元组的FaceNet人脸识别理论与实践、车道检测的两种深度学习思路及烟雾检测4大实践项目。相关理论可参考《基于深度学习的目标检测原理与应用》一书,从而学以致用、融会贯通。
本书系统介绍了推荐算法的知识框架和技术细节,包括召回、粗排、精排和重排等模块。第1章从用户体验、内容生产和平台发展角度介绍为什么需要推荐系统,并阐述推荐系统的分类及整体技术架构。第2章介绍推荐算法模型的基础——数据样本和特征工程。第3章介绍传统推荐算法。第4~7章介绍推荐系统中最复杂的部分——精排模块,包括特征交叉、用户行为序列建模、Embedding表征学习和多任务学习。第8章介绍召回模块,并详细讲解非个性化召回和个性化召回算法。第9章介绍粗排模块,重点讲解特征蒸馏和轻量级特征交叉等方法。第1
图强化学习是深度强化学习的重要分支领域。本书作为该领域的入门教材,在内容上尽可能覆盖图强化学习的基础知识,并提供应用实践案例。全书共 10章,大致分为三部分:第一部分(第 1~3章)介绍图强化学习研究对象(复杂系统、图和复杂网络);第二部分(第 4~7章)介绍图强化学习基础知识(图嵌入、图神经网络和深度强化学习);第三部分(第 8~10章)介绍图强化学习模型框架和应用实践案例,并进行总结和展望。每章都附有习题并介绍了相关阅读材料,以便有兴
生成式AI是科技领域最炙手可热的话题。这本实践用书教授机器学习工程师和数据科学人员如何利用TensorFlow和Keras从零开始创建令人印象深刻的生成式深度学习模型,包括变分自编码器(VAE)、生成对抗网络(GAN)、Transformers、归一化流、基于能量的模型和去噪扩散模型。本书从深度学习的基础知识开始,逐步讲解最前沿的架构。通过各种技巧和窍门,你将理解如何使你的模型学习更高效,变得更具创造力。