作为一门应用型学科,机器学习植根于数学理论,落地于代码实现。这就意味着,掌握公式推导和代码编写,方能更加深入地理解机器学习算法的内在逻辑和运行机制。本书在对全部机器学习算法进行分类梳理的基础之上,分别对监督学习单模型、监督学习集成模型、无监督学习模型、概率模型四个大类共26个经典算法进行了细致的公式推导和代码实现,旨在帮助机器学习学习者和研究者完整地掌握算法细节、实现方法以及内在逻辑。
告诉你一个不太光彩的秘密:在大多数数据科学项目中,有一半的时间都花在清理和准备数据上了。但还有更好的方法:针对表格数据和关系数据库进行优化的深度学习技术,无需密集的特性工程,就能提供洞察和分析。学习使用少量的数据过滤、验证和清洗,就能解锁深度学习性能的技能。《深度学习处理结构化数据实战》传授面向表格数据和关系数据库的强大数据分析技术。本书从多伦多公交系统的数据集出发,带你领略用深度学习处理表格化数据的简易性和便捷性,并教你解决在生产环境中部署模型和监控模型性能等关键问题。
本书以实战为主,通过丰富的实战案例向读者介绍深度学习可应用和落地的项目,书中所有案例都基于Python+TensorFlow 2.5+Keras技术,可用于深度学习课程的实战训练。本书配套示例源码、PPT课件、思维导图、数据集、开发环境与答疑服务。全书共分11章。第1章讲解深度学习的概念、流程、应用场景、模型分类和框架选择,第2~11章列举深度学习的项目实战案例,包括手写体识别、数据集分类、情感分类、文本情感分类、编码器、汉字拼音转换、中文文本分类、多标签文本分类、人脸检测、人脸识别、语
本书作者对于人工智能的发展、应用和影响问题的研究已有几年的时间:初关注人工智能的微观应用问题,对于无人经济的内涵、分类、发展机制、应用模式等做了一些探索;后来研究兴趣转移到宏观层面,重点关注人工智能发展对于就业的影响,本书是作者近两年研究的总结。未来作者将把研究重点转向人工智能发展背景下的分配问题。随着人工智能发展导致劳动被大量替代,社会保障制度的完善将成为维持经济正常运转和社会稳定的关键,当人工智能的发展和应用根本改变了劳动方式、生产方式、资源配置方式、就业结构、经济制度乃至所有制结构时
大数据时代的到来,为人工智能的飞速发展带来前所未有的数据红利。在大数据的喂养下,大量知识不断涌现,如何有效地发掘这些知识呢?知识图谱横空出世。本书是一本讲解如何使用TensorFlow 2构建知识图谱的入门教程,引导读者掌握基于深度学习的知识图谱构建概念、理论和方法。 本书分为13章:第1章从搭建环境开始,包含TensorFlow CPU 版本和GPU版本的安装,并通过一个知识图谱的例子引导读者开始学习;第2~4章介绍TensorFlow API的使用;第5章是Dataset API,学习
?我们可以通过软件和算法获得真爱吗? ?为什么自动驾驶汽车会成为俄罗斯坦克谬论的牺牲品? ?我们在购买产品时,有多少五星级好评是真实的,有多少是买来的? ?我们应该相信计算谁应该获得工作、贷款或社会福利的秘密算法吗? ?法官和警察如何越来越依赖非透明的“黑匣子”算法来预测刑事被告是否会再次犯罪或出庭? ?如果社交媒体平台的业务是向刊登广告的品牌方出售我们的注意力和时间,那么社交媒体值得信赖吗? ?我们是否应该沉迷于滚动鼠标浏览消息,让身体产生更多的多巴胺? 在智能世界,算法和人工智能越来越多地
随着互联网、物联网、云计算等技术的不断发展,许多领域都产生了大量的数据。利用机器学习技术分析海量数据,可以从数据中发现隐含的、有价值的规律和模式,进而用于预测并采取相应动作。在上述背景下,本书从理论、技术和应用三个层面入手,全面讲解如何利用机器学习技术解决实际问题。 本书共分26章,内容包括机器学习解决问题流程、问题分析与建模、数据探索与准备、特征工程、模型训练与评价、模型部署与应用、回归模型、支持向量机、决策树、集成学习、K近邻算法、贝叶斯方法、聚类算法、关联规则学习、神经网络基础、正则
近年来,人工智能发展非常迅速,在可以预见的未来,它必然会强烈冲击并深刻变革人类既有的生活模式。实际上,除技术问题外,人工智能的逻辑基础和伦理基础与哲学之间的关系也十分密切。有鉴于此,本书从与人工智能紧密相关的哲学问题入手,关注如下话题:强人工智能是否可能;近代唯理论和经验论争论对于人工智能的影响;苏联、日本及欧盟在人工智能发展历程中的哲学教训;航空器自动驾驶背后的哲学难题;军用机器人的伦理是非;儒家与人工智能等。作者从逻辑架构和历史经验出发,展望了未来通用人工智能发展的可能性、可行性以及相应的社
深度学习已经进入我们的生活,云计算和大数据为深度学习提供了便利。本书主要讲解深度学习中的数学知识、算法原理和实现方法,配套源码、数据集和开发环境。本书共12章。第1章介绍人类视觉和深度学习的联系。第2章介绍深度学习中最为重要的梯度下降算法。第3章介绍卷积函数。第4章介绍计算损失函数所使用的交叉熵、决策树和信息熵。第5章介绍线性回归和逻辑回归。第6、7章介绍时间序列模型和生成对抗网络。第8章介绍TensorFlow框架。第9章介绍推荐算法。第10章介绍深度学习中的标准化、正则化和初始化。第