本书主要介绍了以Python为语言的人工智能相基础概念和算法, 以实训为主, 在实训案例中深刻理解与掌握人工智能相关应用。本书共分为五篇。第一篇介绍Python的基础用法, 包含了变量、操作符、列表、元组、字典、科学计算库Numpy、可视化库matplotlib等, 第二篇介绍机器学习算法应用, 如KNN、逻辑回归、决策树等, 第三篇介绍深度学习算法应用, 如全连接、卷积、循环、生成对抗等神经网络, 第四篇介绍计算机视觉技术相关应用, 如OpenCV的应用、目标检测、图像分割等, 第五
《图机器学习》详细阐述了与图机器学习相关的基本解决方案,主要包括图的基础知识、图机器学习概述、无监督图学习、有监督图学习、使用图机器学习技术解决问题、社交网络图、使用图进行文本分析和自然语言处理、信用卡交易的图分析、构建数据驱动的图应用程序和图的新趋势等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
JAX是一个用于高性能数值计算的Python库,专门为深度学习领域的高性能计算而设计。本书详解JAX框架深度学习的相关知识,配套示例源码、PPT课件、数据集和开发环境。 本书共分为13章,内容包括JAX从零开始,一学就会的线性回归、多层感知机与自动微分器,深度学习的理论基础,XLA与JAX一般特性,JAX的高级特性,JAX的一些细节,JAX中的卷积,JAX与TensorFlow的比较与交互,遵循JAX函数基本规则下的自定义函数,JAX中的高级包。后给出3个实战案例:使用ResNet完成CI
本书围绕scikit-learn库,详细介绍机器学习模型、算法、应用场景及其案例实现方法,通过对相关算法循序渐进的讲解,带你轻松踏上机器学习之旅。本书采用理论与实践相结合的方式,结合Python3语言的强大功能,以小的编程代价来实现机器学习算法。本书配套PPT课件、案例源码、数据集、开发环境与答疑服务。 本书共分13章,内容包括机器学习的基础理论、模型范式、策略、算法以及机器学习的应用开发,涵盖特征提取、简单线性回归、k近邻算法、多元线性回归、逻辑回归、朴素贝叶斯、非线性分类、决策树回归、
在这个智能为王数据是金的时代,越来越多的数据,包括物联网设备采集的客观世界数据,被用来指导人类的实践活动。机器学习是处理与分析这些数据的一类常用方法。本书力求从原理的角度,从无到有,讲清楚机器学习中的一些常见方法,并从实践的角度,循序渐进,引领读者独立编程实现这些机器学习方法,从而帮助读者迅速掌握机器学习方法,为读者进一步学习理解深度学习方法奠定坚实的原理与实践基础。 本书适合计算机科学与技术、人工智能、物联网工程、数据科学与大数据、通信工程、电子信息、机器人、自动化、智能制造等相关专业高
图神经网络是人工智能的一个热点方向,从图的视角解读大数据,可以灵活建模复杂的信息交互关系,吸引大量学者的关注并在多个工业领域得到广泛应用。《图深度学习从理论到实践》由浅入深,全面介绍图神经网络的基础知识、典型模型方法和应用实践。《图深度学习从理论到实践》不仅包括一般的深度学习基础和图基础知识,还涵盖了图表示学习、图卷积、图注意力、图序列等典型图网络模型,以自研的Galileo平台为代表的图学习框架,以及图神经网络在电商推荐和流量风控方面的两个典型工业应用。《图深度学习从理论到实
本书共14章,涵盖了深度学习中的大部分学习网络方法。第1~2章介绍开发环境软件安装和深度学习相关的软件包,第3~4章是鸢尾花多分类全连接神经网络识别案例与实现,第5~6章是MINIST手写数字识别案例,第7章是FashionMNIST服装识别案例,可以加深对卷积神经网络的认识,第8章介绍CIFAR-10数据集彩色图片识别案例,第9章介绍循环卷积神经网络并通过字母预测实现,第10章是Embedding编码下通过4个字母预测下一个字母的案例,第11章是股票预测案例,第12章是基于OpenCV和Ker
未来网络是什么样子?构建未来网络的关键技术有哪些?如果你在思考这些问题,请你一定要阅读本书。AI助力通信网络的发展构建了“网络AI”,在此基础上叠加云网融合、B5G/6G、网络5.0、算力网络、区块链、数字孪生、量子通信、网络安全等新的关键技术,共同打造“2030后的未来网络”。本书通过讲解和剖析上述关键技术,多维度地阐述了未来网络发展的愿景和演进路径,可让读者系统地学习与思考。 本书的主要读者对象为电信运营商、电信设备提供商、电信咨询行业的从业人员和从事通信科研的高校师生,以及关注通信行业技
本书介绍了人工智能和大数据涉及的核心概念和模型。书中涉及概念包括监督和非监督学习、数据类型、可视化、线性回归、逻辑回归、分类回归树、神经网络等。同时,本书理论和实际并重,基于真实的实例和数据集,引入了R语言演示实际计算和操作,为读者展示解决实际问题的代码,从而让读者掌握在实际生活中解决相关问题的方法。 本书适合想要综合学习人工智能、大数据和数据科学,尤其是想要依靠这些学科解决实际问题的人学习,也适合作为相关课程的参考教材。
本书以读者熟知的姜子牙的故事为线索,围绕人工智能技术的特色和应用,介绍自然语言处理、机器翻译、计算机视觉等人工智能技术内容,并通过大量实例帮助读者动手实践,掌握用AI解决实际问题的能力。