本书系统地总结了数学分析的基本知识、基本理论、基本方法和解题技巧,收集了具有代表性的题目,介绍了数学分析的解题思路和解题方法。全书共15章,内容包括:实数与函数、极限、函数的连续性、导数与微分、一元函数不定积分等。
本书内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。
本书是与《概率论与数理统计》( 张继昌编著,浙江大学出版社,2006)配套的同步练习与提高,内容包括概率论的基本概念、随机变量及其分布、多维随机变量、随机变量的数字特征、极限定理、数理统计基础、参数估计、假设检验。本书按章节编排了和教材内容相对应的基础练习题,并在题目之后留了相应的解题空间,以便
本书根据教育部非数学类专业数学基础课程教学指导分委员会修订的新的"工科类本科数学基础课程教学基本要求”,结合教学实践经验修订而成。本书与《微积分(上、下)》主教材的内容相对应,内容包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分与定积分、一元微积分学的补充应用、无穷级数
本书根据教育部非数学类专业数学基础课程教学指导分委员会修订的新的"工科类本科数学基础课程教学基本要求”,结合教学实践经验修订而成。本书与《微积分(上、下)》主教材的内容相对应,内容包括:向量代数与空间解析,多元函数微分学,重积分,曲线积分与曲面积分,常微分方程。
《复变函数与积分变换(第二版)》主要内容包括:复变函数与解析函数,复变函数的积分,复变函数的级数,留数及其应用,保角映射,积分变换的预备知识,Fourier变换,Laplace变换,Z变换,小波变换基础,复变函数与积分变换的MATLAB求解等。作者用MATLAB求解验算了大量的例题,使读者能够熟悉MATLAB在复变函数与积分变换课程中的基本方法。另外,在Cauchy积分定理的证明,已知解析函数的实部(或虚部)求该解析函数,Taylor级数与Laurent展开级数定理的证明,无穷远点留数的计算
本书内容包括:函数;极限与连续;导数与微分;定积分与不定积分;微分方程;微分中值定理与导数的应用;定积分的应用。