本书遵循少讲精讲原则,以数学史、数学问题、数学知识和数学观点为载体,介绍数学思想、数学方法、数学精神,不深入探讨数学理论,以能讲清数学思想为准则。本书包括6个模块:数学与逻辑学;引历史之脉;探数学之趣;感数学之美;谜数学之思;悟数学之用。以精讲留白为主要形式,将讲授、内化与吸收、讨论、提问作为主线,构建师生共同学习的课堂,搭建有表达、思辨、智慧碰撞、创新创造、活力四射的教学平台。本书包含丰富的思政元素,具有文理融合通专融合的特点。本书可作为高职院校数学文化类课程的教材,也可作为
本书是一本经典的数学思维入门图书,从最基本的代数与几何的知识开始,将不同方面的数学内容加以安排和设计,使得它们在逻辑上层层展开,形成易于理解的知识体系。本书内容包括:代数、个人理财、测量、几何等。
本书关注现代数学中更贴合实际应用的领域——概率、统计与图论,阐述了从事科学研究和技术开发的几种工具,内容包括:计数法与概率论、统计学、选举与分配、图论。
本书尝试观察的知识现象,多有不为主流数学史所留意的题材,如“计算”大叙事的简要轮廓、中国古代对角度的认识等。其实历史发生的就发生了,没发生的就没发生,像所谓的“李约瑟难题”,即近代科学为什么没有在中国产生这类问题,不敢期望会取得终极答案。历史的进程是极度复杂的,从太多难以分辨的影响因素中,厘清一条因果明晰的关系链条,这种企图对作者来说没有什么吸引力。作者只希望读者能从涉猎数学史的过程里寻觅一些乐趣,感受那种在前人到过的山川原野上采撷到被忽视的奇花异草的欣喜。
本书的主轴是“艺数”。“艺数”是近年来台湾数学科普界所新造的名词,它的范围至少包含以下三类:(1)以艺术手法展示数学内容;(2)受数学思想或成果启发的艺术;(3)数学家创作的艺术。数学与艺术互动最深刻的史实,莫过于欧洲文艺复兴时期从绘画发展出透视法,里昂?阿尔伯蒂的名著《论绘画》开宗明义:“我首先要从数学家那里撷取我的主题所需的材料。”这种技法日后促成数学家建立了射影几何学,终成为19世纪数学的主流。以往很多抽象的数学概念,数学家只能在脑中想象,很难传达给外行人体会。但是自从计算机带来的革命性进
本书各章的主角都曾经在当时数学主流之外,蹚出一条清溪,有的日后甚至拓展开恢弘的水域。历史上这类辩证的发展,让独行者的声音能不绝于耳,好似美国文学家梭罗在《瓦尔登湖》(Walden; or Life in the Woods)所说:“一个人没跟上同伴的脚步,也许正因为他听到另外的鼓点声。”这种个人偏好当然也影响了价值取向,作者认为在数学的国境内,不应该有绝对的霸主。一些不起眼的题材,都有可能成为日后重要领域的开端。正如美国诗人佛洛斯特的著名诗作《未曾踏上的路》(The Road Not Taken
本书涉及有关自然数的本体论和认识论的基本问题。十九世纪后半叶,多位数学思考者、哲学思考者围绕自然数这一概念展开过一系列探索。其结果各有所长、各有千秋,但都不尽如人意。原因在于人们只注意到自然数的有限基数特点而疏忽了自然的实在的刚性的序特点。我国古代充满智慧的先人们则早已驾轻就熟地应用这种序结构来表达思想。 本书试图从自然界的序现象出发,结合我国古代先人应用序的智慧,阐明这种几乎无处不在的序结构如同到处可见的几何结构一样,是人类一种来自生活经验的认识之源,有关自然数及其运算律的认识也和有关几
本书为日本数学家、沃尔夫奖、高斯奖、京都奖得主伊藤清的数学思想文集。书中梳理了他学习数学、走上数学研究道路的经历,收录了他关于“数学与科学”“直观与逻辑”“纯粹数学与应用数学”“数学的科学性与艺术性”等方面的思考,同时也完整记录了他创立的“伊藤引理”的过程与感悟。本书是了解伊藤清数学思想的珍贵资料,也可作为了解概率论相关概念与发展的读本。本书适合数学专业的大学师生阅读,也可作为一般读者了解数学的启蒙读物。
《数学思想方法(第2版)》共十三章,分为三个部分。主要介绍数学思想方法的两个源头、数学思想方法的几次突破、数学的真理性以及现代数学的发展趋势,对于了解现代数学观、确立现代数学教学观颇有帮助。中篇分别对数学教学中常用的抽象与概括、猜想与反驳、演绎与化归、计算与算法、应用与建模,以及分类、数形结合、特殊化等数学思想方法进行了比较详细的介绍,旨在让学员能较好地掌握这些重要的数学思想方法。下篇主要阐述了数学思想方法与素质教育之关系、数学思想方法教学的主要阶段及其原则。 这次修订的主要内容如