《铁电体物理基础》用物理原理解释了铁电体在电场作用下发生的各种行为。《铁电体物理基础》分为两部分,**部分介绍了铁电体的基本特性:铁电性、铁电体的结构与对称性、热力学特征函数和变量的雅可比偏导数、实验测试原理和铁电畴起源,以及铁电体的相变原理。第二部分用统计方法详细阐明了各种铁电体的电极化原理,给出了电滞回线、介电常数、电致伸缩、储能效应和热释电效应的数学公式,并通过对公式的数值模拟与实验结果的对比,解释了各种实验现象随温度变化的原理和电场诱导极化效应。*后,详细解释了弛豫铁电体发生介电弥散的原
本书为“聚集诱导发光丛书”之一。聚集诱导发光(AIE)机理的探索伴着AIE领域的发展,AIE领域经过20余年的蓬勃发展,机理探究日新月异。从猜测假设,到理论推算;从初步实验验证,到指导新体系开发;从经典光物理过程,到新颖的空间共轭机制探索;AIE机理的研究正展现出其在该领域不可或缺的指导意义。本书系统地阐述了主要AIE机理的提出、验证、应用和局限性。全书共分为6章,第1章简述了AIE机理的发展历程和分类;第2章深入解读有机分子的激发态;第3章阐述了分子内运动受限机理;第4章探讨了反Ka
《狄拉克半金属的能带调控和超快动力学研究(英文版)》针对超快时间分辨角分辨光电子能谱系统的研制以及两个典型狄拉克半金属材料的电子能谱和超快动力学开展研究,取得了多项创新性研究成果。包括成功研制出光子能量连续可调的超快时间分辨角分辨光电子能谱系统,为研究三维量子材料的超快动力学提供了重要的实验手段;通过Li 插层形成凯库勒序石墨烯,首次提供了手征对称性破缺这一重要物理效应的直接实验证据;并观测到了增强的电子-声子耦合作用,以及与凯库勒序关联的平带电子结构;首次直接揭示了狄拉克半金属Cd3As2 中
本书主要围绕作者在缺陷与催化方面开展的研究工作进行了系统梳理和总结,内容包括固体缺陷化学及其发展概述、催化中的缺陷材料及其作用机制概述、碳材料缺陷与催化、金属材料缺陷与催化、金属化合物材料缺陷与催化、金属有机配位化合物缺陷与催化、负载型材料缺陷与催化等。通过催化剂表面缺陷的构筑,设计高性能催化剂,认识缺陷产生机制,理解缺陷与催化性能之间的构效关系,构建其在催化剂设计方面的应用基础,为新型催化剂的设计提供理论依据。
《介电常数近零媒质的集成光学掺杂理论及应用》针对介电常数近零(ENZ)媒质及其光学掺杂调控展开研究,介绍了集成化、低损耗的ENZ媒质及光学掺杂的理论与实现方案,并基于近零折射率特性与光学掺杂电磁调控给出一系列电路与天线领域的关键应用。《介电常数近零媒质的集成光学掺杂理论及应用》的内容可以总结为如下三个方面。①基础理论与平台方面:阐述了集成光学掺杂的理论,可解决近零折射率媒质与光学掺杂的损耗问题与平面集成困难。②工程应用方面:介绍了基于集成光学掺杂的电路与天线应用,将近零折射率媒质的独特性质与集成
《固体物理基础》基于“厚基础、宽口径”的人才培养原则,在引入统计物理学和量子力学基本理论基础上,详细介绍能带理论和金属电子论,并在电子层面阐述材料的热、磁、光、电等基本性质的起源,最后介绍固体物理理论在各类新材料中的应用。本书充分融合了凝聚态物理和典型功能材料最近20年的主要研究成果,针对材料类本科生知识结构和培养特点,精心架构了材料与物理之间的桥梁,注重理论与实践结合,突出固体物理的材料特色,有利于提升材料类学生的专业基础理论水平。本书具体内容为:量子力学和统计物理学导论、金属电子论、
本书为“聚集诱导发光丛书”之一。作为第一本系统总结聚集诱导发光分子自组装行为及其应用的图书,本书从聚集诱导发光分子的结构特点和分子自组装基本原理出发,全面介绍了实现聚集诱导发光分子自组装的策略和方法,并对聚集诱导发光分子的组装行为在生物医学、光学、化学传感、材料过程可视化等领域的应用进行了系统介绍。
《固体物理导论》是教育部高等学校材料类专业教学指导委员会规划教材。本书主要围绕固体的微观结构,微观粒子的存在状态、相互作用及运动变化规律,固体的宏观物理性质及用途展开,蕴含了近似、假设、抽象、简化等研究方法,渗透了晶体结构决定性质、性质体现结构的辩证观点。教材绪论部分介绍了固体物理学的研究对象、发展历史及其涵盖的内容,并补充了量子力学的基本知识作为铺垫。其后包含6章内容,前3章均围绕固体内部原子的相互作用和运动变化规律展开,如晶体的结构及表征、晶体的结合类型及键合性质、晶格振动理论及热学性质。第
本书主要诠释固体中电子的运动规律,同时给出晶格振动的分析。运用量子力学的理论,描述原子结合、晶体结构、能带理论、晶格振动等固体物理学的核心概念和理论;在此基础上,推导出固体的电学、磁学、热学、光学特性。力求把固体物理的知识体系化、结构化,以薛定谔方程贯穿始终,给出固体物理的知识结构以及各个基本概念之间的相互联系,有助于读者的理解掌握。本书是清华大学电子信息科学与技术大类本科生核心课程“固体物理基础”的教材,既适用于电子信息大类专业的课程教学,也可供相关领域的科研人员、工程技术人员参考。