《骨细胞力学》系统介绍了力致骨结构重建过程中骨组织细胞的功能、细胞的力学环境,以及细胞/分子水平的力学—生物学耦合规律。书中通过具体的研究实例展示了骨组织细胞如何通过膜上分子、离子通道、胞内骨架来感受其周围力学环境的变化;进而如何将这些力学刺激信号传递到细胞内部,并传递到细胞核内以影响基因的表达,后控制细胞的生物学性质;以及在成骨过程和破骨过程的不同阶段,力学刺激下细胞的生物学响应规律有何特点。书中还简单介绍了骨组织细胞力学研究中常用的一些实验技术和方法。
微丝是细的细胞骨架,直径约为6nm。它们由G型肌动蛋白亚基线性聚合而成,发生聚合的一端称为正端,由于不断生长会对胞内组分(如细胞膜)施加相应的挤压力。它们也可以与肌球蛋白进行相互作用而产生细胞内部的收缩力,两者形成的耦合物称为肌动肌球纤维。小GTP结合蛋白Rho主要负责调节肌动肌球纤维的收缩力,而Rac负责调节片状伪足,Cdc42负责调节丝状伪足。中间丝纤维的直径约为10nm,它比微丝的结构要稳定,主要功能是组成细胞内的三维结构,对细胞器进行固定,同时也是细胞核纤层的主要结构成分。微管的直径约为23nm,为中空结构,内腔直径约为15nm。它们通常由13个原丝纤维组成,是α和β型微管蛋白的聚合物。微管纤维也是动态变化的,当它们与GTP结合时可以发生聚合。9个微管纤维的三聚体可以形成中心体,而9个二聚体沿着两个额外微管纤维可组装为伪足和鞭毛,两个二聚体之间通过动力蛋白发生连接。在细胞内微管纤维主要负责承担压力,也可在有丝分裂或中心粒的定位过程中承担拉力。
3.5.2细胞骨架对力的感受
细胞骨架对于力学刺激的一个显著的响应是肌动蛋白纤维束与交联蛋白和肌球蛋白等共同形成应力纤维结构,每根应力纤维通常包含10~30根肌动蛋白纤维。目前已经有大量工作证明不同的力学刺激都可以在骨组织细胞内引起应力纤维结构的变化。例如,很早就有研究发现作用于成骨细胞的流体剪切力可以引起肌动蛋白纤维聚合为应力纤维(Pavalkoetal.,1998),而破坏肌动蛋白纤维骨架可以减弱骨组织细胞对流体剪切力的响应(Maloneetal.,2007;Myersetal.,2007)。另外,增强肌动蛋白纤维的聚合可以促进成骨向分化(Arnsdorfetal.,2009)。Pommerenke等(1996,2002)利用磁场加载装置对成骨细胞施加接力,发现周期性应力刺激可以通过整合素引起成骨细胞骨架上连接的磷酸酪氨酸水平的增加,并可导致粘附斑激酶由细胞质向骨架的转移。在体情况下骨组织细胞通常会受到来自液体的静水压力和流体剪切力。一项体外实验表明,当成骨细胞受到流体剪切力和静态或周期性静水压同时作用时,肌动蛋白骨架结构的变化并不相同(Gardinieretal.,2014)。流体剪切力作用下施加15mmHg的静水压力时,细胞中的肌动蛋白会组装为应力纤维,但如果将压力降低到大气压水平,则会抑制应力纤维的形成。除了肌动蛋白,细胞骨架的另一种重要成分微管也对力学信号转导具有重要作用,例如,完整的微管对于成骨细胞在力学刺激下的分化和增殖都是必要的(Rosenberg,2003)。但细胞骨架通过什么单元及如何传递和感受力学刺激仍需进一步研究(Scottetal.,2008)。