本书系统阐述了DeepSeek大模型架构、部署及应用实战的相关内容。书中从人工智能和大模型的基础理论出发,深入剖析了DeepSeek的底层技术,如Transformer架构、混合专家、动态任务分配、稀疏激活及归一化等关键技术,详细介绍了模型训练、优化和推理的前沿方法。书中不仅展示了DeepSeek在多模态模型和推理系统中的技术优势,还提供了丰富的实战案例,涵盖了从本地部署到云端应用,再到与办公软件、开发工具和Web交互系统的无缝集成。通过理论解析与实践演示,读者将获得从模型设计到实际应用全流程的详细指导。