本书是关于优化基本方法及其在工程领域中的应用的教材。本书涵盖面广,在概念和模型方面,介绍了优化领域的一些基本概念、无约束优化问题和有约束优化问题;在求解方法方面,涵盖了梯度方法和非梯度方法;几乎涵盖了所有类型的优化问题,包括线性规划、整数规划、几何规划、多目标优化问题和动态规划,并辅以丰富的工程应用实例;后,还讨论了基于有限元的优化问题。值得指出的是,全书特别注意引入优化领域的软件工具,如MATLAB和EXCEL SOLVER,让读者很容易上手,并学以致用。全书组织结构合理,按照从易到难的顺序组织知识内容,符合一般的学习习惯。同时,部分章节又可以独立成章,从而能够满足不同层次读者的学习需要。
第1章基本概念
11绪论
12历史沿革
13非线性规划
14优化问题建模
15单变量和两变量问题的图示化求解
16极大值和极小值的存在条件:魏尔斯特拉斯定理
17二次型和正定矩阵
18函数的Cn连续性
19梯度向量和黑塞矩阵及其数值求解的差分方法
110泰勒定理以及线性和二次逼近
111其他概念
习题
参考文献第2章无约束下的一维极小化问题
21引言
22单变量极小化问题的相关理论
23单峰函数和极小点的交叉试探法
24斐波那契方法
25黄金分割法
26多项式拟合方法
27非单峰函数极小点求解的ShubertPiyavskii方法
28利用MATLAB求函数极小点
29函数零点的求解
习题
参考文献第3章无约束优化问题
31引言
32优性的必要条件和充分条件
33凸性
34基本概念:初始化、搜索方向和步长
35速下降法
36共轭梯度法
37牛顿法
38拟牛顿法
39近似线性搜索
310使用MATLAB求解无约束优化问题
习题
参考文献第4章线性规划
41引言
42线性规划问题描述
43线性规划建模、求解、解的含义与拉格朗日乘子
44线性规划问题建模案例
45几何概念:超平面、半空间、多面体和极点
46线性规划的标准形式
47单纯形法——从小于或等于约束条件开始
48大于或等于约束和等式约束的处理
49修正单纯形法
410线性规划中的对偶
411对偶单纯形法
412灵敏度分析
413内点法
414二次规划和线性互补问题
习题
参考文献
第5章有约束极小化非线性规划
51引言
52两变量优化问题的图示化求解
53利用EXCEL规划求解功能和MATLAB求解非线性优化问题
54非线性优化问题的标准形式及转换方法
55优性必要条件
56优性充分条件
57凸性
58优解的参数灵敏度分析
59线性约束优化问题的Rosen梯度投影方法
510Zoutendijk可行方向法(针对非线性约束的优化问题)
511广义既约梯度法(针对非线性约束优化问题)
512逐步二次规划法
513各数值求解方法的特性和能力
习题
参考文献第6章罚函数、对偶和几何规划
61引言
62外点罚函数法
63内点罚函数法
64对偶
65增强拉格朗日法
66几何规划
习题
参考文献第7章非线性优化问题的直接搜索法
71引言
72坐标轮换法
73HookeJeeves模式搜索法
74Rosenbrock方法
75Powell共轭方向法
76NelderMead单纯形替换法
77模拟退火法
78遗传算法
79微分进化算法
710求解有约束问题的Box复合形法
习题
参考文献第8章多目标优化
81引言
82帕累托优性
83生成整个帕累托曲线
84寻找优调和解的方法
习题
参考文献
第9章整数和离散规划
91引言
920-1规划
93混合整数规划的分支定界法(基于线性规划的方法)
94Gomory割平面法
95离散非线性单调结构问题的Farkas方法
96利用遗传算法求解离散规划
习题
参考文献第10章动态规划
101引言
102动态规划问题及求解方法
103问题建模与计算机实现
习题
参考文献第11章优化技术在运输问题、指派问题和网络问题中的应用
111引言
112运输问题
113指派问题
114网络问题
习题
参考文献第12章基于有限元分析的优化设计
121引言
122求导计算
123利用优准则方法和非线性规划方法求解尺寸(参数)优化问题
124连续结构体的拓扑优化
125形状优化
126动态响应的优化分析
习题
参考文献
附录A