本书分为三大篇:第一篇为常微分方程数值解,包含了2章内容,分别介绍了常微分方程初值问题的理论基础和数值方法;第二篇为偏微分方程数值解,包含了6章内容,分别介绍了常用的有限差分、谱方法和有限元方法;第三篇为分数阶微分方程数值解,包含了3章内容,介绍了分数阶微积分的相关理论和算法、分数阶的常微分方程和分数阶的偏微分方程数值解法。本书的内容比较全面,基本涵盖了"微分方程数值解"常用的各种方法,将数学理论、数值方法与应用有机地结合起来,并以生动详细的实例为载体,较为详细的介绍了不同方法如何运用于不同的方程。本书可以作为普通高等院校研究生、本科生的"微分方程数值解"课程的教材,根据不同层次所需的教学学时数选择相应的教学内容;同时也可以作为科研工作者应用数学方法来解决实际问题的参考书。
本书是为普通高等院校的研究生、大学生学习“微分方程数值解”这门课编写的教学参考书,华南农业大学从2005年开始设置“微分方程数值解”这门课程,选修该课程的学生来自理、工、农、林、经、文等多个不同学科,这些学生的数学基础和计算机知识参差不齐,面对这种实际问题,我们在实际教学过程中一直在思考:如何教才能满足各类学生学以致用的实际需求,什么样的教材能有很好的实用性和很强的针对性,从而能够进一步培养和提高学生应用数学解决实际问题的能力。面对这些存在的实际问题和所教学生的具体情况,我们从2005年开始尝试编写适用不同层次学生的“微分方程数值解”的讲义,在校内使用。在使用过程中历经多次修改,逐步完善,最终形成了这本书。
在本书编写过程中,我们广泛地参考了国内外许多“微分方程数值解”的文献和专著,吸取了国内外许多学者和专家研究的新成果,结合自己的教学和科研的实际情况,做到取长补短。本书的内容比较全面,基本涵盖了“微分方程数值解”常用的各种方法,将数学理论、数值方法与应用有机地结合起来,并以生动详细的实例为载体,较为详细地介绍不同方法如何运用于不同的方程,
在教材具体内容的选取上,我们做了精心设计,以便于读者尽快熟悉微分方程数值解的基本理论,并能结合实际算法,使读者能在较短的时间里学会这些方法的基本概念以及求解方法,尽快能用于解决实际问题,本书分为三大篇:第1篇为常微分方程数值解,包含了两章内容,分别介绍了常微分方程初值问题的理论基础和数值方法;第2篇为偏微分方程数值解,包含了六章内容,分别介绍了常用的有限差分、谱方法和有限元方法;第3篇为分数阶偏微分方程数值解,包含了三章内容,介绍了分数阶微积分的相关概念及算法、分数阶常微分方程和分数阶偏微分方程数值解解法。
前言
第1篇 常微分方程数值解
引言
第1章 常微分方程初值问题的理论基础
第2章 常微分方程初值问题的数值方法
2.1 Euler方法
2.1.1 显式Euler法
2.1.2 隐式Euler方法
2.2 梯形方法
2.3 Runge—Kutta方法
2.3.1 Runge—Kutta方法
2.3.2 Runge—Kutta方法的构造
2.4 单步法的收敛性与相容性
2.4.1 单步法的收敛性
2.4.2 单步法的相容性
2.5 一般线性多步法
2.5.1 显式Adams方法(外插法)
2.5.2 隐式Adams方法(内插法)
2.6 一般线性多步法的收敛性和稳定性
2.6.1 线性差分方程的基本性质
2.6.2 一般线性多步法的收敛性和稳定性
第2篇 偏微分方程数值解
第3章 基本理论及概念
3.1 偏微分方程定解问题
3.2 差分方程
3.2.1 定解区域的离散化
3.2.2 差分格式
3.2.3 显式格式与隐式格式
3.3 截断误差和收敛性
3.3.1 截断误差的概念
3.2.2 推导截断误差的方法
3.3.3 差分格式的收敛性
3.3.4 差分格式的稳定性
3.4 差分格式的构造方法
3.4.1 数值微分法
3.4.2 积分插值法
3.4.3 待定系数法
第4章 椭圆型方程的有限差分方法
4.1 Dirichlet边值问题
4.2 五点差分格式
4.2.1 差分格式的建立
4.2.2 差分格式解的存在性
4.2.3 差分格式的求解
4.2.4 差分格式解的先验估计
4.2.5 差分格式解的收敛性和稳定性
4.2.6 数值计算与Matlab模拟
4.3 紧差分格式
4.3.1 差分格式的建立
4.3.2 差分格式的求解
4.3.3 差分格式解的收敛性和稳定性
第5章 抛物型方程的差分方法
5.1 一维线性抛物方程
5.2 向前差分格式
5.2.1 差分格式的建立
5.2.2 差分格式解的存在性
5.2.3 差分格式的求解
5.2.4 差分格式解的先验估计
5.2.5 差分格式解的收敛性和稳定性
5.3 向后差分格式
5.3.1 差分格式的建立
5.3.2 差分格式解的存在性
5.3.3 差分格式解的先验估计
5.3.4 差分格式解的收敛性和稳定性
5.4 Richardson格式
5.4.1 差分格式的建立
5.4.2 差分格式的求解
5.4.3 差分格式的不稳定性
5.5 Grank—Nicolson格式
5.5.1 差分格式的建立
5.5.2 差分格式解的存在性
5.5.3 差分格式解的先验估计
5.5.4 差分格式解的收敛性和稳定性
5.6 数值模拟
第6章 双曲型方程的有限差分方法
6.1 波动方程
6.2 显式差分格式
6.2.1 差分格式的建立
6.2.2 差分格式解的收敛性和稳定性
6.3 隐式差分格式
6.3.1 差分格式的建立
6.3.2 差分格式解的收敛性和稳定性
6.4 数值模拟
6.5 一阶双曲方程
6.5.1 迎风格式
6.5.2 积分守恒的差分格式
6.5.3 其他差分格式
6.5.4 数值模拟
第7章 谱方法
7.1 Fourier谱方法
7.1.1 指数正交多项式
7.1.2 一阶波动方程的Fourier谱方法
7.2 Chebyshev谱方法
7.2.1 Chebyshev多项式
7.2.2 Gauss型积分的节点和权函数
7.2.3 数值分析
7.2.4 数值模拟
7.2.5 热传导方程的应用
第8章 有限元方法
8.1 边值问题的变分形式
8.1.1 Sobolev空间Hm(I)
8.1.2 a(u,u)基本性质
8.2 有限元法
8.2.1 Ritz—Galerkin法
8.2.2 有限元法构造
8.3 线性有限元法的误差估计
8.3.1 H1 估计
8.3.2 L2 估计
8.4 二次元
8.4.1 单元插值函数
8.4.2 有限元方程的形成
8.5 椭圆型方程边值问题的有限元法
8.5.1 变分原理
8.5.2 Ritz—Galerkin方法
8.5.3 有限元方法
8.6 抛物型方程初边值问题的有限元法
第3篇 分数阶偏微分方程数值解
引言
第9章 分数阶微积分的相关概念及算法
9.1 分数阶微积分定义及其相互关系
9.2 Riemann—Liouville分数阶微积分的G算法
9.3 Riemann—Liouville分数阶导数的D算法
9.4 Riemann—Liouville分数阶积分的R算法
9.5 分数阶导数的L算法
9.6 分数阶差商逼近的一般通式
9.7 经典整数阶数值微分、积分公式的推广
9.7.1 经典向后差商及中心差商格式的推广
9.7.2 插值型数值积分公式的推广
9.7.3 经典线性多步法的推广(Lubich分数阶线性多步法)
第10章 分数阶常微分方程数值解方法
10.1 直接法
10.2 间接法
10.2.1 R算法
10.2.2 分数阶预估—校正方法
10.3 差分格式
10.4 误差分析
第11章 分数阶偏微分方程数值解解法
11.1 空间分数阶对流一扩散方程
11.2 时间分数阶偏微分方程
11.2.1 差分格式
11.2.2 稳定性分析(Fourier—VonNeumann方法)
11.2.3 误差分析
11.3 时间—空间分数阶偏微分方程
11.3.1 差分格式
11.3.2 稳定性及收敛性分析
参考文献