《随机分析与控制简明教程》介绍随机分析及随机控制的基本理论与方法. 第1章介绍布朗运动与鞅, 涵盖定义、停时定理、Doob不等式、下鞅的Doob-Meyer分解定理、Meyer过程等内容; 第2章介绍随机积分、It.公式、鞅表示定理, 以及测度变换的Girsanov定理. 第3章介绍随机微分方程基础: 解的存在唯一性、解对系数的连续依赖性等; 第4章介绍倒向随机微分方程的基本内容; 第5章给出了随机控制问题的基本框架, 用凸变分的方法推导*大值原理(包括线性二次控制问题的求解)、动态规划原理,
贝叶斯是当前人工智能的重要基础之一。目前市面上有关贝叶斯的书籍,大多是从工科角度去阐述贝叶斯定理的推导和应用,因此运用了非常多的烦琐公式、定理和推导。而贝叶斯应用却是非常广泛的,绝不仅仅是机器学习的一个工具,还可以上升到一套科学思维方法论。本书主要以贝叶斯为核心,讲授了一些重要的思维方式,包括概率思维、最大似然估计、贝叶斯估计,以及用贝叶斯估计来破除某些思维的误区。本书由浅入深地介绍了贝叶斯的核心思想,并且给出了如何用贝叶斯来指导人们日
试验设计是近代科学发展的重要基础理论之一。它研究不同条件下各种试验的*优设计准则、构造和分析的理论与方法。为适应现代试验的需要,作者于2006年开始建立了一个新的*优因子分析设计理论,包括*优性准则、*优设计构造,以及他们在各种不同设计类中的推广。《*优因析设计理论(英)》*先给出近代试验设计,主要是多因子试验设计的基本知识和数学基础,接着从二水平对称因子设计开始介绍了该理论的一些基本概念,包括AENP的提出、GMC准则的引进、GMC设计的构造等。《*优因析设计理论(英)》对由AENP建
在产品研发或改进过程中,需要进行大量而重复的实验以确定最优的配方及工艺。掌握先进的实验方法和数据处理方法,可以缩短研发周期、节省研发成本。《从零学实验设计与数据处理》以实验设计为主线,除了介绍实验设计的基本原理与方法以外,佐以大量产业车间范例,旨在使读者学会不同的实验设计的理论与方法。同时通过本书对范例的说明,了解如何应用实验设计增进科研以及在车间实验的效率。本书具有理论与实践紧密结合的特点,可供材料、化工等相关行业的研发工程师及大中专学生参考,也可供高等学校化工类专业及相关专业
本书共有11章,第1章至第5章是概率论部分,包括随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理;第6章至第8章是数理统计部分,包括样本及抽样分布、参数估计、假设检验;第9章至第11章是随机过程部分,包括随机过程引论、马尔可夫链、平稳随机过程.各章均选配了适量的习题,并附有参考答案.此外,本书还提供了三个附录,包括重要分布表、几种常用的概率分布、2011年至2023年全国硕士研究生入学统一考试真题. 本书可作为工科、理科(非数学)、经济、
从古到今,人们经常会深陷占卜带来的虚幻的错觉,低估巧合事件的发生概率因而以为有神秘力量在起作用,将事物复杂的发展规律简单化、线性化,进而做出与实际情况相去甚远的预测。数学可以在非线性发展的世界中充当向导的作用。有了数学的帮助,我们就可以通过理性和逻辑思考,避免直觉所犯的一系列错误。但即使是数学,在处理这个复杂世界的各种问题时,也做不到面面俱到,游刃有余。这本书介绍了本福德定律、贝叶斯定理、博弈论、正反馈回路等数学知识,帮助我们戳穿流传多年的民间经验法则,辨别常见的认知错误,发现毫无意义
时间序列分析是统计学科的一个重要分支,它主要研究随着时间的变化,事物发生、发展的过程,寻找事物发展变化的规律并预测未来的走势。在日常生产和生活中,时间序列比比皆是,所以目前时间序列分析方法广泛应用于经济、金融、天文、气象、海洋、物理、化学、医学、质量控制等诸多领域,成为众多行业经常使用的统计方法。 本书是基于Python编写的入门级时间序列分析教材,主要内容包括时间序列分析简介、时间序列的预处理、ARMA模型的性质、平稳序列的拟合与预测、无季节效应的非平稳序列分析、有季节效应的非平稳序列
《互联网大厂推荐算法实战》介绍了互联网大厂当前采用的一些前沿推荐算法,并梳理了这些算法背后的思想脉络与技术框架。 《互联网大厂推荐算法实战》总计10章,内容涵盖了推荐系统的基础知识、推荐系统中的特征工程、推荐系统中的Embedding、推荐系统的各组成模块(包括召回、粗排、精排与重排)所使用的算法技术、推荐算法实践中经常会遇到的难题以及应对之道(其中涉及多任务推荐、多场景推荐、新用户冷启动、新物料冷启动、评估模型效果、定位并解决问题等),最后还用一章的篇幅介绍了推荐算法工程师在工作、学习、面试时
本书从系统视角出发,阐述如何利用技术手段搭建企业级推荐系统,内容包括认知篇、数据篇、召回篇、排序篇、系统篇 5 个部分,覆盖企业级推荐系统建设的核心要点。本书知识体系清晰,从基础知识切入,逐步深入,先后涉及推荐系统的经典技术、主流技术和前沿技术。本书通过“理论+案例+代码示例+心得体会”的方式阐述、归纳和总结推荐系统的知识,帮助读者理解推荐系统,掌握技能,建立系统思维。 本书适合对推荐系统感兴趣的初学者、从事数据挖掘/信息推荐相关工作的研发工程师、产品经理、架构师,以及相关专业学生和教师阅读。
本书展示了如何使用真实的数据真实地进行贝叶斯数据分析。作者从概率与程序设计的基本概念出发,逐步带你进阶,帮助你最终掌握在实际的贝叶斯数据分析中常用的高级模型。本书分为三大部分,共有25章。第一部分介绍基础知识,内容包括贝叶斯推断的基本思想、模型、概率及R语言编程。第二部分涵盖了现代贝叶斯数据分析的所有关键思想。第三部分介绍如何在实际数据上应用贝叶斯方法。