本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。包括包括:紧Kahler流形上复hessian方程的研究、偏微分方程和黎曼几何、不变体系、几何可变体系、瞬变体系和刚片、自由度与辛几何、代数几何和物理中的超弦理论、二维非线性偏微分方程、Ricci流、Gromov-Witten不变量理论、Kaehler-Ricci流,Kaehler-Ricci孤立子唯一性,调和映射紧性,高余维平均曲率流等。
本书介绍了等几何分析方法,它包括等几何有限元法、等几何边界元法以及等几何有限元-边界元耦合方法。本书分为9章。第1章为绪论,第2-4章介绍了等几何有限元法的基本理论及其在含贯穿裂纹的薄壳结构、含裂纹和孔洞缺陷的功能梯度薄壁结构和线性热-粘弹性问题中的应用,第5章介绍了瞬态热传导问题的等几何边界元法,第6和7章分别介绍了等几何边界元法在含体力的三维粘弹性力学问题和多维多尺度复合结构的热弹性-粘弹性力学问题中的应用,第8章介绍了三维弹性力学问题等几何有限元-边界元耦合方法中非相适应界面和对称迭代求解
《空间-时间-物质》是被誉为20世纪伟大的数学家之一的德国数学家赫尔曼·外尔(Hermann Weyl, 1885—1955)的名著《空间-时间-物质》(Raum, Zeit, Materie), 是黎曼几何与广义相对论领域的著作。1916年到1917年, 外尔在苏黎世联邦工
本书重点论述微分几何与共轭…面原理在齿轮啮合传动与运动分析方面的应用。首先以矢量函数…线论与…面论为基础,拓展了密切…面、等距…面、…率并矢等内容,丰富了典型…线与…面的应用实例;然后概括了共轭…面运动的两类特征函数与特征矢量,围绕共轭…面的整体几何与微分几何论述了空间…面运动的形成原理、模型构建与分析方法;最后以弧齿锥齿轮、摆线针轮啮合特性分析与建模为例,讲述了齿面拓扑修形与轮齿接触分析的基础理论与计算方法。
《几何原本》是古希腊数学家欧几里得的一部不朽之作,被誉为史上zui成功的教科书,牛顿、爱因斯坦、丘成桐等科学家对其推崇备至, 曾国藩、徐光启、余世存等名人对其盛赞有加。 《几何原本》的最大成就及其伟大意义在于它用公理方法建立起演绎数学体系的最早典范,其对数学发展的影响超过了任何其他著作。 《几何原本》自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛能够与《几何原本》相比。
本书在理论方面以韦伊定理为目标,介绍有限域上平面代数曲线的几何、数论与代数性质和概念。韦伊定理是几何、数论和代数的结合,这种结合发展出纯粹数学的一个新的交叉分支:算术代数几何。本书意图帮助莘莘学子了解和掌握有限域上的代数曲线理论,使代数曲线理论成为研究通信中各种问题的有力的数学工具。 本书分为预备知识、代数曲线的理论、代数曲线的应用三部分。预备知识部分介绍抽象代数知识;理论部分包括射影直线理论、一般代数曲线理论、函数域算术及zeta函数理论;应用部分主要涵盖编码、密码的几个主要应用。 本书
《几何基础》是数学大师希尔伯特的一部名著,首次发表于1899年,该书第一次给出了完备的欧几里得几何公理系统。全体公理按性质分为五组(即关联公理、次序公理、合同公理、平行公理和连续公理),他对它们之间的逻辑关系作了深刻的考察,精确地提出了公理系统的相容性、独立性与完备性要求。为解决独立性问题,他的典型方法是构作一个模型,不满足所论的公理,但却满足所有其他公理。采用这种途径可赋予非欧几何以严密的逻辑解释,同时开拓了建立其他新几何学的可能性。对于相容性问题,他的重大贡献是借助于解析几何而将欧氏几
本书系统地介绍了解析几何的基本内容和基本方法.内容共有5章,包括向量代数与坐标、平面与空间直线、曲线与曲面方程、二次曲线与二次曲面的一般理论及等距变换与仿射变换.书中有适量的例题且每节都配有习题,并附有习题答案与提示.本书在第3章和第5章介绍了用Python作图的一些基本方法,并以二维码形式提供了全部程序及录屏演示.对于教材中部分知识点讲解、定理证明及例题的求解,也以二维码形式提供了视频,便于学生更好地理解.本书可作为综合性大学、理工类大学和高等师范院校数学类专业教
本书集周春荔教授毕生所学,将几何辅助线的添加方法和原理娓娓道来,充分体现"数学是智力的磨刀石,对于所有信奉教育的人而言,是一种不可缺少的思维训练”的育人作用。几何定理的证明,除少数简易的以外,非添加有用的辅助线,否则就无从着手。辅助线的作法,千变万化,没有一定的方法可以遵循,所以是证题时最困难的一件事。在普通几何书中,很少有将几何辅助线的原理、方法和建构讲得如此清晰明了,学生系统学习后,会得心应手解决几何相关问题。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚至成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。