稀薄原子气体中玻色-爱因斯坦凝聚的实现为研究原子物质波的非线性动力学性质提供了可能性,一些在非线性光学中熟知的奇异现象不断在玻色-爱因斯坦凝聚中被观察到。在过去二十年间,操控原子间相互作用的技术引起了人们广泛的关注。例如,通过磁场或光场Feshbach共振技术,人们可以有效地调节原子间的相互作用从而达到操控该系统的目的,特别地,在共振磁场附近,系统会呈现出丰富的新奇量子物理性质。在平均场理论框架下,稀薄气体的玻色-爱因斯坦凝聚体的动力学可以由Gross-Pitaevskii(GP)方程来描述,该方程的非线性项系数可以通过磁场或光场Feshbach共振技术来调制。在《外势场中玻色-爱因斯坦凝聚体的动力学研究》中,作者基于平均场近似的GP方程来研究外势场中的具有各种原子相互作用的玻色-爱因斯坦凝聚体的新奇动力学。
博士后制度已有一百多年的历史。世界上普遍认为,博士后研究经历不仅是博士们在取得博士学位后找到理想工作前的过渡阶段,而且也被看成是未来科学家职业生涯中必要的准备阶段。中国的博士后制度虽然起步晚,但已形成独具特色和相对独立、完善的人才培养和使用机制,成为造就高水平人才的重要途径,它已经并将继续为推进中国的科技教育事业和经济发展发挥越来越重要的作用。
中国博士后制度实施之初,国家就设立了博士后科学基金,专门资助博士后研究人员开展创新探索。与其他基金主要资助“项目”不同,博士后科学基金的资助目标是“人”,也就是通过评价博士后研究人员的创新能力给予基金资助。博士后科学基金针对博士后研究人员处于科研创新“黄金时期”的成长特点,通过竞争申请、独立使用基金,使博士后研究人员树立科研自信心,塑造独立科研人格。经过30年的发展,截至2015年年底,博士后科学基金资助总额约26.5亿元人民币,资助博士后研究人员5万3千余人,约占博士后招收人数的1/3。截至2014年年底,在我国具有博士后经历的院士中,博士后科学基金资助获得者占72.5%。博士后科学基金已成为激发博士后研究人员成才的一颗“金种子”。
在博士后科学基金的资助下,博士后研究人员取得了众多前沿的科研成果。将这些科研成果出版成书,既是对博士后研究人员创新能力的肯定,也可以激发在站博士后研究人员开展创新研究的热情,同时也可以使博士后科研成果在更广范围内传播,更好地为社会所利用,进一步提高博士后科学基金的资助效益。
中国博士后科学基金会从2013年起实施博士后优秀学术专著出版资助工作。经专家评审,评选出博士后优秀学术著作,中国博士后科学基金会资助出版费用。专著由科学出版社出版,统一命名为《博士后文库》。
资助出版工作是中国博士后科学基金会“十二五”期间进行基金资助改革的一项重要举措,虽然刚刚起步,但是我们对它寄予厚望。希望通过这项工作,使博士后研究人员的创新成果能够更好地服务于国家创新驱动发展战略,服务于创新型国家的建设,也希望更多的博士后研究人员借助这颗“金种子”迅速成长为国家需要的创新型、复合型、战略型人才。
查看全部↓
《博士后文库》序
Preface
Introduction
Chapter 1 Theoretical models and methods
1.1 Introduction to Bose-Einstein condensates
1.2 The Gross-Pitaevskii mean-field models
1.2.1 The continuous Gross-Pitaevskii equations
1.2.2 The discrete Gross-Pitaevskii equations
1.3 Variational approximation approach
1.4 Discrete modulational instability analysis
1.5 Prolongation structure technique
Bibliography
Chapter 2 Variational approximation and modulational instability.
2.1 Variational approximation for continuous GP equations
2.1.1 Variational approximation for the focusing NLS equation
2.1.2 Collective excitations of a 3D BEC in a double-well trap
2.2 Variational approximation for discrete Gross-Pitaevskii equations
2.3 Discrete modulational instability of discrete Gross- Pitaevskii equations
Bibliography
Chapter 3 Dynamics of BEC with time- and space-modulated nonlinearities
3.1 Linear time-dependent SchrSdinger equation with harmonic potential
3.2 One-dimensional BECs with time- and space-modulated nonlinearities
3.2.1 One-dimensional BEC with space-modulated nonlinearity
3.2.2 Two-component BECs with spatiotemporally modulated nonlinearities
3.3 Two-dimensional BEC with time- and space-modulated nonlinearities
3.3.1 Quantized quasi-2D BEC with spatially modulated nonlinearity
3.3.2 Quantized vortices in a rotating Bose-Einstein condensate
3.4 Three-dimensional BEC with space-modulated nonlinearity
3.4.1 3D BEC in cylindrically symmetric potential
3.4.2 3D BEC in spherically symmetric potential
Bibliography
Chapter 4 Dynamics of Bose-Einstein condensate with cubicquintic nonlinearity
4.1 The theoretical model and its solutions
4.2 Stability of nonlinear matter waves in BEC with two-body interaction
4.3 Stability of nonlinear matter waves in BEC with two- and three-body interactions
4.4 The exact vortex soliton solutions of quasi-two dimensional GP equation
4.5 Structures of the vortex solitons
Bibliography
Chapter 5 Integrability and dynamics of a spin-1 Bose-Einstein condensate
5.1 The theoretical model
5.2 Integrability and matter-wave solitons in a spin-1 Bose-Einstein condensate
5.2.1 Similarity transformation
5.2.2 Prolongation structures of the three coupled NLS equation
5.3 Matter-wave solitons in F = 1 spinor Bose-Einstein condensate
5.3.1 Exact N-bright soliton solutions to the integrable case b2=b0
5.3.2 Exact N-bright soliton solutions to the integrable case b2=0
Bibliography
Chapter 6 Matter-wave solitons in a spin-1 BEC with time-modulated external potential
6.1 The model
6.2 Exact matter-wave soliton solutions
6.3 Matter-wave solitons in a spin-1 BEC with time-dependent parameters
6.3.1 Attractive harmonic potential with constant frequency
6.3.2 Expulsive harmonic potential with time-dependent frequency
6.3.3 Different choices of the condensate parameters
Bibliography
Chapter 7 Dynamics and stability of the spin-1 BEC in a standing light wave
7.1 Spin-1 BEC in a standing light wave
7.2 Stationary solutions and linear stability analysis
7.2.1 Exact stationary solutions of three-component GP equations.
7.2.2 Linear stability analysis
7.3 Dynamics and stability
7.3.1 Dynamics and stability of the stationary solutions 1~3
7.3.2 Stability of the stationary solutions 4~5
7.3.3 Stability of the stationary solutions 6~9
Bibliography
Chapter 8 Summary and future prospects
8.1 Summary
8.2 Future prospects
编后记
Appendix
查看全部↓