整数剩余类环上导出序列,主要介绍环上线性递归序列基础理论、本原序列的权位压缩导出序列的保熵性和模2压缩导出序列的保熵性;第二部分是带进位反馈移位寄存器(FCSR)序列,主要介绍FCSR序列算术表示、有理逼近算法和极大周期FCSR序列的密码性质;第三部分是非线性反馈移位寄存器(NFSR)序列,主要介绍NFSR序列簇的线性结构、NFSR串联结构分解、环状串联结构分析、Galois NFSR的非奇异性等。
本书旨在巩固数学分析基础知识,补充数学分析中的一些重要方法,提高分析数学问题的思维能力和灵活运用多种知识解决问题的能力。基本框架为:对数学分析的一些重要知识点进行回顾和梳理;介绍一些重要的方法,特别是阶的估计的方法和思想;通过一些考研、竞赛试题等进行解题思路分析,对方法进行应用和强化,注重方法上的分析和讲解。内容包括极限理论、函数的连续性、微分学、积分学、级数、广义积分和含参量积分等。
本书根据编著者在西北工业大学电磁场与微波技术课程组多年的教学经验编写而成。本书首先介绍了偏微分方程和定解问题的概念和建立方法;然后以方法为主线,依次介绍了分离变量法、行波法、积分变换法和格林函数法;最后介绍了应用于分离变量法的贝塞尔函数和勒让德多项式。本书注重理论与实际的结合,叙述注重启发性,易学易懂。本书可作为普通高等院校工科专业的本科教材,也可作为相关科研、工程技术人员的参考书或自学用书。
微积分是理工科高等学校非数学类专业最基础、重要的一门核心课程。许多后继数学课程及物理和各种工程学课程都是在微积分课程的基础上展开的,因此学好这门课程对每一位理工科学生来说都非常重要。本套教材在传授微积分知识的同时,注重培养学生的数学思维、语言逻辑和创新能力,弘扬数学文化,培养科学精神。本套教材分上、下两册。上册内容包括实数集与初等函数、数列极限、函数极限与连续、导数与微分、微分学基本定理及应用、不定积分、定积分、广义积分和常微分方程。下册内容包括多元函数的极限与连续、多元函数微分学及其应用、重积
本书是分数阶系统与高阶逻辑形式化验证的基础理论研究著作。分数阶系统是建立在分数阶微积分方程理论上实际系统的数学模型。分数阶微积分方程是扩展传统微积分学的一种直接方式,即允许微积分方程中对函数的阶次选择分数,而不仅是现有的整数。分数阶微积分不仅为系统科学提供了一个新的数学工具,它的广泛应用也表明了实际系统动态过程本质上是分数阶的。高阶逻辑形式化验证是形式化验证方法的一种,它是一种人机交互的定理证明方法。本书以分数阶微积分和高阶逻辑形式化验证为切入点,系统性研究了分数阶系统的求解、近似化、控制器设计
上海大学理学院数学系,成立于1960年,其前身是上海科技大学数学系,由嘉定校区的数学系和延长校区、徐汇校区、嘉定东校区的数学教研室合并而成,本书主编为杨建生。杨建生,基础数学博士,上海大学数学系教授。《微积分强化训练题》(第三版)是2015年上海普通高校优秀本科教材《高等数学(上、下)》(上海大学数学系编,高等教育出版社出版)配套辅导书。全书由三个部分组成,分别对应上海大学三个学期教学内容。 第一部分含有13套训练题,涵盖函数极限与连续、导数与微分、微分中值定理及其应用、不定积分与定积
本书基于高阶约束流、Hamilton结构及Sato理论提出了构造孤立子系统的Rosochatius形变、Kupershmidt形变、带源形变以及扩展的高维可积系统的一般方法, 并以光纤通信及流体力学中的重要模型, 如超短脉冲方程、Hirota-方程、Camassa-Holm型方程及q-形变的KP方程等为例详细阐述了我们提出的方法. 进而推广达布变换及穿衣法求解可积形变的孤子方程。由于可积形变的方程中增加了非线性项, 所以相应方程的解具有更加丰富的特性和应用。
本书是专门为幂零李群上的非交换调和分析方向的研究生和青年教师编写的全英文学术专著,主要介绍从事一般二步幂零李群相关工作所需的基础知识、概念和原理,内容聚焦于一般二步幂零李群的几何分析、不可约酉表示的完整分类、傅里叶分析的相关性质、二阶次椭圆算子以及热核的刻画等。
本书研究了非线性算子不动点问题迭代逼近的收敛算法。这些算法包括相同空间下的一些非线性算子不动点问题的迭代序列,也包括不同空间下一些非线性算子不动点分裂问题的迭代序列,并在合适的条件下验证了这些算法具有强收敛或者弱收敛性。书中给出了许多非常初等的例子,并通过这些例子说明一些非线性算子的关系、有界线性算子范数的计算等,使得更容易理解这些抽象的非线性算子概念及其不动点迭代算法。
本书基于作者近些年关于泛函方程的Hyers-Ulam稳定性研究工作的成果整理而成。本书较为系统地研究了在不同空间结构上的几类泛函方程的Hyers-Ulam稳定性问题。本书共6章。第1章介绍Hyers-Ulam稳定性有关概念及其相关问题的研究进展;第2章研究可加泛函方程的Hyers-Ulam稳定性;第3章研究两类Jensen型二次泛函方程的Hyers-U1am稳定性;第4章研究混合型二次与四次泛函方程的Hyers-U1am稳定性及其在相关空间中的应用:第5章研究混合型可加、三次与四次泛函