本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。
全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
前言
“数学分析”作为数学类各专业的基础与主干课程,其理论体系的严密性与逻辑性很强,其中定理是数学分析理论体系中的重要内容。定理的历史演变、内容与证明、现实意义、相互关系、应用与推广,值得每一位教学研究人员和学习者深入研究和探讨。
笔者在多年的数学分析教学与研究实践中,一直关注着上述问题,积累了许多相关的资料,并进行了深入的思考,逐渐理清了数学分析定理研究的大致框架和基本思路。首先,对前人大量的研究成果进行了认真的归纳、整理、分析,对研究、认知、教学、学习等过程开展了认真的挖掘、分析、实践;然后,对数学分析中的重要定理进行了分类,力求全面化、系统性、思辨性,使其既符合科学研究过程的一般规律,又符合教学认知过程的一般规律。
按照这样的思路,本书把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定 前言
“数学分析”作为数学类各专业的基础与主干课程,其理论体系的严密性与逻辑性很强,其中定理是数学分析理论体系中的重要内容。定理的历史演变、内容与证明、现实意义、相互关系、应用与推广,值得每一位教学研究人员和学习者深入研究和探讨。
笔者在多年的数学分析教学与研究实践中,一直关注着上述问题,积累了许多相关的资料,并进行了深入的思考,逐渐理清了数学分析定理研究的大致框架和基本思路。首先,对前人大量的研究成果进行了认真的归纳、整理、分析,对研究、认知、教学、学习等过程开展了认真的挖掘、分析、实践;然后,对数学分析中的重要定理进行了分类,力求全面化、系统性、思辨性,使其既符合科学研究过程的一般规律,又符合教学认知过程的一般规律。
按照这样的思路,本书把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类。对每类定理从定理的历史演变、定理的证明方法、定理的相关内容分析(包含定理的几何现实意义、定理的条件与结论、定理间的相互关系等)、定理的应用范畴、定理的推广方法五个侧面展开细致的研究。本书是基于数学方法论、数学教学论、数学研究的基本方法等理论依据编写的。
书中对定理的历史演变分析,力求体现历史发展的原本过程;对定理的证明方法,力求体现多样化;对定理的相关内容分析,力求密切联系教学实际;对定理的应用范畴,力求体现典型、丰富;对定理的推广方法,力求体现启发性与研究性。书中题量较大、题型丰富,参考文献详细,不仅可作为教学研究的辅导材料,也可作为数学分析的学习指南和复习考研的参考书。
最后,衷心感谢电子工业出版社赵玉山老师和相关编辑人员的辛勤工作,感谢我们的两个研究生吕海玲、于金倩老师为书稿校对所做的工作,正是他们的努力,才能使本书得以早日出版。
由于水平有限,成书仓促,书中一定还有不少缺点和错误,恳请广大读者批评指正。
杨艳萍,枣庄学院副教授,山东省数学教育理事会副会长,山东省教学名师。出版过《数学分析的思想与方法》等著作。
第1章 微积分基本定理
1.1 微积分基本定理的历史演变
1.1.1 微积分基本定理的发现阶段
1.1.2 微积分基本定理的创立阶段
1.1.3 微积分基本定理的完善阶段
1.2 微积分基本定理的内容与证明
1.2.1 微积分第一基本定理及其证明
1.2.2 微积分第二基本定理及其证明
1.3 微积分基本定理的相关内容分析
1.3.1 微积分基本定理的条件与结论
1.3.2 微积分基本定理的意义与作用
1.3.3 两种形式微积分基本定理之间的关系
1.3.4 微积分基本定理与其他定理之间的关系
1.4 微积分基本定理的应用
1.4.1 求含有变限积分函数的导数
第1章 微积分基本定理
1.1 微积分基本定理的历史演变
1.1.1 微积分基本定理的发现阶段
1.1.2 微积分基本定理的创立阶段
1.1.3 微积分基本定理的完善阶段
1.2 微积分基本定理的内容与证明
1.2.1 微积分第一基本定理及其证明
1.2.2 微积分第二基本定理及其证明
1.3 微积分基本定理的相关内容分析
1.3.1 微积分基本定理的条件与结论
1.3.2 微积分基本定理的意义与作用
1.3.3 两种形式微积分基本定理之间的关系
1.3.4 微积分基本定理与其他定理之间的关系
1.4 微积分基本定理的应用
1.4.1 求含有变限积分函数的导数
1.4.2 求含有变限积分函数的极限
1.4.3 求含有变限积分的函数方程的解
1.4.4 讨论含变限积分函数的性质
1.4.5 构造变限积分辅助函数,证明等式与不等式
1.4.6 利用微积分基本定理证明数学分析中的重要定理
1.4.7 利用牛顿莱布尼茨公式计算定积分
1.5 微积分基本定理的推广
1.5.1 原函数存在定理的推广
1.5.2 变限积分求导公式的推广
1.5.3 牛顿莱布尼茨公式的推广
参考文献
第2章 微分中值定理
2.1 微分中值定理的历史演变
2.1.1 对微分中值定理的初步认识
2.1.2 罗尔中值定理的演变
2.1.3 拉格朗日中值定理的演变
2.1.4 柯西中值定理的演变
2.1.5 泰勒中值定理的演变
2.2 微分中值定理的内容与证明
2.2.1 罗尔中值定理及其证明
2.2.2 拉格朗日中值定理及其证明
2.2.3 柯西中值定理及其证明
2.2.4 泰勒中值定理及其证明
2.3 微分中值定理的相关内容分析
2.3.1 微分中值定理的背景
2.3.2 微分中值定理的条件与结论
2.3.3 微分中值定理的意义与作用
2.3.4 四个微分中值定理之间的关系
2.3.5 微分中值定理的中值点
2.4 微分中值定理的应用
2.4.1 罗尔中值定理的应用
2.4.2 拉格朗日中值定理的应用
2.4.3 柯西中值定理的应用
2.4.4 泰勒中值定理的应用
2.5 微分中值定理的推广
2.5.1 罗尔中值定理的推广
2.5.2 拉格朗日中值定理的推广
2.5.3 柯西中值定理的推广
参考文献
第3章 积分中值定理
3.1 积分中值定理的历史演变
3.2 积分中值定理的内容与证明
3.2.1 积分第一中值定理及其证明
3.2.2 推广的积分第一中值定理及其证明
3.2.3 积分第二中值定理及其证明
3.2.4 加强条件的积分第二中值定理及其证明
3.3 积分中值定理的相关内容分析
3.3.1 积分中值定理的几何意义
3.3.2 积分中值定理的条件与结论
3.3.3 微分中值定理与积分中值定理之间的关系
3.3.4 积分中值定理的中值点
3.4 积分中值定理的应用
3.4.1 估计某些定积分的值
3.4.2 求含有积分的极限
3.4.3 证明含有积分的不等式
3.4.4 证明含有中值点的积分问题
3.4.5 讨论含积分函数的收敛性与单调性
3.5 积分中值定理的改进与推广
3.5.1 积分中值定理的改进
3.5.2 积分第一中值定理的推广
3.5.3 积分第二中值定理的推广
参考文献
第4章 积分关系定理
4.1 积分关系定理的历史演变
4.2 积分关系定理的内容与证明
4.2.1 格林公式及其证明
4.2.2 高斯公式及其证明
4.2.3 斯托克斯公式及其证明
4.3 积分关系定理的相关内容分析
4.3.1 各类积分的起源与几何意义
4.3.2 各类积分之间的关系
4.3.3 各类积分之间的转化
4.3.4 四个积分公式之间的关系
4.3.5 四个积分公式的统一形式
4.4 积分关系定理的应用
4.4.1 格林公式的应用
4.4.2 高斯公式的应用
4.4.3 斯托克斯公式的应用
4.5 积分关系定理的推广
4.5.1 格林公式的推广
4.5.2 高斯公式的推广
4.5.3 斯托克斯公式的推广
参考文献
第5章 极限关系定理
5.1 海涅定理的历史演变
5.2 海涅定理的内容与证明
5.3 海涅定理的相关内容分析
5.3.1 海涅定理的条件与结论
5.3.2 海涅定理的意义与作用
5.4 海涅定理的应用
5.4.1 证明函数极限不存在
5.4.2 证明函数极限的性质
5.4.3 求数列的极限
5.4.4 判断级数的敛散性
5.4.5 判断函数的可导性
5.4.6 证明函数为常量函数
5.5 海涅定理的推广
5.5.1 把任意数列 推广为单调数列
5.5.2 把 存在极限 推广为非正常极限
5.5.3 把函数极限存在推广为函数连续及单侧连续
5.5.4 把任意数列 推广为有理(无理)数列
5.5.5 把函数极限存在推广为含参变量广义积分一致收敛
参考文献
第6章 闭区间上连续函数的性质定理
6.1 闭区间上连续函数性质定理的历史演变
6.2 闭区间上连续函数性质定理的内容与证明
6.2.1 有界性定理及其证明
6.2.2 最值性定理及其证明
6.2.3 零点存在定理及其证明
6.2.4 介值性定理及其证明
6.2.5 一致连续性定理及其证明
6.3 闭区间上连续函数性质定理的相关内容分析
6.3.1 闭区间上连续函数性质定理的理解
6.3.2 闭区间上连续函数性质定理的几何意义
6.3.3 闭区间上连续函数性质定理的条件与结论
6.3.4 闭区间上连续函数性质定理的统一表述
6.4 闭区间上连续函数性质定理的推广
6.4.1 有界性定理的推广
6.4.2 最值性定理的推广
6.4.3 零点存在定理的推广
6.4.4 介值性定理的推广
6.4.5 一致连续性定理的推广
6.5 闭区间上连续函数性质定理的应用
6.5.1 有界性定理的应用
6.5.2 最值性定理的应用
6.5.3 零点存在定理的应用
6.5.4 介值性定理的应用
6.5.5 一致连续性定理的应用
参考文献
第7章 实数连续性(完备性)定理
7.1 实数连续性定理的历史演变
7.2 实数连续性定理的内容与证明
7.2.1 确界存在定理及其证明
7.2.2 单调有界定理及其证明
7.2.3 柯西收敛准则及其证明
7.2.4 区间套定理及其证明
7.2.5 聚点定理及其证明
7.2.6 致密性定理及其证明
7.2.7 有限覆盖定理及其证明
7.3 实数连续性定理的相关内容分析
7.3.1 实数连续性定理的条件与结论
7.3.2 实数连续性定理的内在联系及等价性
7.3.3 实数连续性定理所提供的数学方法
7.3.4 实数连续性定理所提供的工具
7.4 实数连续性定理的推广
7.4.1 确界存在定理的推广
7.4.2 单调有界定理的推广
7.4.3 柯西收敛准则的推广
7.4.4 区间套定理的推广
7.4.5 聚点定理的推广
7.4.6 致密性定理的推广
7.4.7 有限覆盖定理的推广
7.5 实数连续性定理的应用
7.5.1 确界存在定理的应用
7.5.2 单调有界定理的应用
7.5.3 柯西收敛准则的应用
7.5.4 区间套定理的应用
7.5.5 聚点定理的应用
7.5.6 致密性定理的应用
7.5.7 有限覆盖定理的应用
参考文献
总参考文献