"根据高等院校数学建模课程的教学基本要求,结合编者丰富的理论教学和竞赛指导经验编写本书。全书共六章,分别是方程模型、规划模型、图与网络模型、统计模型、数据处理与模型求解、建模竞赛与论文写作指导,前四章主要介绍数学建模中应用比较广泛的四类模型及其求解方法,第五章针对前四章的模型给出软件(包括LINGO和 MATLAB)求解的算法和步骤,以及软件的一些使用说明,第六章结合建模的应用,介绍全国大学生数学建模竞赛的一些相关知识。本书应 用性强,通俗易懂,能有效启发和培养学生解决实际问题的能力。
本教材为“十二五”普通高等教育本科***规划教材和“十三五”江苏省高等学校重点教材,本教材第二版获首届全国教材建设奖全国优秀教材二等奖.内容包括矩阵、n维向量、线性方程组、矩阵的特征值和特征向量、二次型.本教材不仅力求内容的科学性与系统性,而且注重代数概念的几何背景以及实际应用背景的介绍,以利于读者更好地理解和掌握线性代数理论,提高运用线性代数方法解决实际问题的能力.每章均配备适量的练习题,适合不同类别的读者用于平时练习、期末复习或考研复习.读者扫描书中的二维码可以浏览丰富的配套资源,内容包括有
本书为日本数学家、菲尔兹奖得主广中平祐先生的思想文集。书中“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解多维度思考方法中的创造性。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、亲自教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
本书根据中国数学会制订的“中国大学生数学竞赛大纲”、江苏省普通高等学校非理科专业高等数学竞赛委员会制订的“高等数学竞赛大纲”和教育部制订的“考研数学考试大纲” 编写,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、重积分、曲线积分和曲面积分、空间解析几何、级数、微分方程等9个专题,每个专题又含“基本概念和内容提要”“竞赛题解析”和“练习题”三个部分。其中,竞赛题选自全国大学生数学竞赛试题,江苏省、北京市、浙江省、广东省、天津市、陕西省等省市大学生数学竞赛试题,南京大
自1998年PT对称量子力学(非经典量子力学)被提出以来,逐步激发了人们对有关PT对称理论和实验方面的广泛关注.作者自2007年开始研究PT对称相关的问题,本书的主要内容源于作者的部分研究成果.本书主要阐述PT对称理论、方法及其在线性和非线性波方程中的应用,主要针对具有物理意义的不同复值PT对称势,研究非厄米Hamilton算子具有全实特征值谱的参数分布、非线性光学系统及相关领域中的非线性Schr?dinger方程(其在Bose-Einstein凝聚态中被称为Gross-Pitaevskii方程
本书以奇摄动控制系统为对象,以Kokotovic奇摄动方法为框架,并以输入状态稳定(ISS)概念作为刻画外部干扰的工具,在Tikhonov极限定理的基础上,首先讨论了ISS分析与控制,包括基于状态观察器的控制器设计;其次对具有内部不确定性和外部干扰输入的奇摄动控制系统,分别研究了相应鲁棒ISS稳定与镇定;然后分别讨论了奇摄动系统的鲁棒H∞分析与控制,并且详细介绍了线性奇摄动系统的动态输出反馈的问题;最后着重介绍了基于边界层函数法的直接展开法,以不同的视角讨论了非标准奇摄动**控制中具有阶梯型空间
分数阶微积分研究的是非整数阶的微分和积分,可实现的阶数灵活且自由度大,所以在图像处理领域的应用逐渐得到关注。本书将通过特定的分数阶微积分定义与图像处理领域的重要工具——傅里叶变换和分数阶傅里叶变换,建立分数阶微积分与图像变换的关系。全书共7章,分别是绪论、图像处理及分数阶微积分基础、分数阶微积分与信号处理的关系、基于分数变阶微分的图像去噪方法、图像复原的分数阶偏微分方法、图像分割的分数阶微积分方法和图像增强的分数阶微积分方法。
本书引进的改进傅里叶级数,是在闭区间上可以一致收敛地逼近任意形式的拟光滑函数的级数。本书给出了:变系数线性常微分方程的通用求解方法(这里变系数可以是连续函数,也可以是间断的函数);对具有各阶奇异点的奇异性方程(正则或非正则)给出了求解的原则;对几种常见的奇异常微分方程给出了详尽的求解过程和计算算例;完满地求解了两个典型的海洋动力学问题(海洋内波与地形的相互作用,风场作用下水气界面的稳定性分析)。
整数剩余类环上导出序列,主要介绍环上线性递归序列基础理论、本原序列的权位压缩导出序列的保熵性和模2压缩导出序列的保熵性;第二部分是带进位反馈移位寄存器(FCSR)序列,主要介绍FCSR序列算术表示、有理逼近算法和极大周期FCSR序列的密码性质;第三部分是非线性反馈移位寄存器(NFSR)序列,主要介绍NFSR序列簇的线性结构、NFSR串联结构分解、环状串联结构分析、Galois NFSR的非奇异性等。
《矩阵特征值定位理论》较为全面、系统地介绍了矩阵特征值定位的基本理论、方法及其相关问题. 《矩阵特征值定位理论》共五章, 包括预备知识、Ger.gorin 圆盘定理与严格对角占优矩阵、Brauer 卵形定理与双严格对角占优矩阵、几类结构矩阵的特征值定位与估计(包括非负矩阵谱半径的估计、随机矩阵非 1 特征值的定位与估计、Toeplitz 矩阵特征值的定位等)以及与矩阵特征值定位相关的其他问题(如严格对角占优矩阵的 Schur 补、B-矩阵与实特征值的估计、线性互补问题解的误差估计、矩阵伪谱